A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Evaluating the Performance of Multi-scan Integration for UAV LiDAR-Based Tracking




TekijätCatalano Iacopo, Peña Queralta Jorge, Westerlund Tomi

ToimittajaWesterlund Tomi, Peña Queralta Jorge

Konferenssin vakiintunut nimiInternational Conference on FinDrones

KustannuspaikkaCham

Julkaisuvuosi2024

Kokoomateoksen nimi New Developments and Environmental Applications of Drones: Proceedings of FinDrones 2023

Aloitussivu85

Lopetussivu95

ISBN978-3-031-44606-1

eISBN978-3-031-44607-8

DOIhttps://doi.org/10.1007/978-3-031-44607-8_6

Verkko-osoitehttps://doi.org/10.1007/978-3-031-44607-8_6

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/387602790


Tiivistelmä

Drones have become essential tools in a wide range of industries, including agriculture, surveying, and transportation. However, tracking unmanned aerial vehicles (UAVs) in challenging environments, such as cluttered or GNSS-denied environments, remains a critical issue. Additionally, UAVs are being deployed as part of multi-robot systems, where tracking their position can be essential for relative state estimation. In this chapter, we evaluate the performance of a multi-scan integration method for tracking UAVs in GNSS-denied environments using a solid-state LiDAR and a Kalman Filter (KF). We evaluate the algorithm’s ability to track a UAV in a large open area at various distances and speeds. Our quantitative analysis shows that while “tracking by detection” using a constant-velocity model is the only method that consistently tracks the target, integrating multiple scan frequencies using a KF achieves lower position errors and represents a viable option for tracking UAVs in similar scenarios.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 12:16