A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
Evaluating the Performance of Multi-scan Integration for UAV LiDAR-Based Tracking
Tekijät: Catalano Iacopo, Peña Queralta Jorge, Westerlund Tomi
Toimittaja: Westerlund Tomi, Peña Queralta Jorge
Konferenssin vakiintunut nimi: International Conference on FinDrones
Kustannuspaikka: Cham
Julkaisuvuosi: 2024
Kokoomateoksen nimi: New Developments and Environmental Applications of Drones: Proceedings of FinDrones 2023
Aloitussivu: 85
Lopetussivu: 95
ISBN: 978-3-031-44606-1
eISBN: 978-3-031-44607-8
DOI: https://doi.org/10.1007/978-3-031-44607-8_6
Verkko-osoite: https://doi.org/10.1007/978-3-031-44607-8_6
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/387602790
Drones have become essential tools in a wide range of industries, including agriculture, surveying, and transportation. However, tracking unmanned aerial vehicles (UAVs) in challenging environments, such as cluttered or GNSS-denied environments, remains a critical issue. Additionally, UAVs are being deployed as part of multi-robot systems, where tracking their position can be essential for relative state estimation. In this chapter, we evaluate the performance of a multi-scan integration method for tracking UAVs in GNSS-denied environments using a solid-state LiDAR and a Kalman Filter (KF). We evaluate the algorithm’s ability to track a UAV in a large open area at various distances and speeds. Our quantitative analysis shows that while “tracking by detection” using a constant-velocity model is the only method that consistently tracks the target, integrating multiple scan frequencies using a KF achieves lower position errors and represents a viable option for tracking UAVs in similar scenarios.
Ladattava julkaisu This is an electronic reprint of the original article. |