A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Diffusion spiders: Green kernel, excessive functions and optimal stopping




TekijätLempa Jukka, Mordecki Ernesto, Salminen Paavo

KustantajaELSEVIER

KustannuspaikkaAMSTERDAM

Julkaisuvuosi2024

JournalStochastic Processes and their Applications

Tietokannassa oleva lehden nimiSTOCHASTIC PROCESSES AND THEIR APPLICATIONS

Lehden akronyymiSTOCH PROC APPL

Artikkelin numero 104229

Vuosikerta167

Sivujen määrä34

ISSN0304-4149

eISSN1879-209X

DOIhttps://doi.org/10.1016/j.spa.2023.104229

Verkko-osoitehttps://doi.org/10.1016/j.spa.2023.104229

Preprintin osoitehttps://arxiv.org/abs/2209.11491


Tiivistelmä
A diffusion spider is a strong Markov process with continuous paths taking values on a graph with one vertex and a finite number of edges (of infinite length). An example is Walsh's Brownian spider where the process on each edge behaves as a Brownian motion. In this paper we calculate firstly the density of the resolvent kernel in terms of the characteristics of the underlying diffusion. Excessive functions are studied via the Martin boundary theory. A crucial result is an expression for the representing measure of a given excessive function. These results are used to solve optimal stopping problems for diffusion spiders.(c) 2023 Elsevier B.V. All rights reserved.



Last updated on 2024-27-12 at 09:42