Refereed journal article or data article (A1)

Detailed spectrophotometric analysis of the superluminous and fast evolving SN 2019neq




List of AuthorsFiore Achille, Benetti Stefano, Tartaglia Leonardo, Jerkstrand Anders, Salmaso Irene, Tomasella Lina, Morales-Garoffolo Antonia, Geier Stefan, Elias-Rosa Nancy, Cappellaro Enrico, Wang Xiaofeng, Mo Jun, Chen Zhihao, Yan Shengyu, Pastorello Andrea, Mazzali Paolo A, Ciolfi Riccardo, Cai Yongzhi, Fraser Morgan, Gutiérrez Claudia P, Karamehmetoglu Emir, Kuncarayakti Hanindyo, Moran Shane, Ochner Paolo, Reguitti Andrea, Reynolds Thomas M, Valerin Giorgio

PublisherOxford University Press

Publication year2024

JournalMonthly Notices of the Royal Astronomical Society

Journal name in sourceMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY

Journal acronymMON NOT R ASTRON SOC

Volume number527

Issue number3

Start page6473

End page6494

Number of pages22

ISSN0035-8711

eISSN1365-2966

DOIhttp://dx.doi.org/10.1093/mnras/stad3655

URLhttps://academic.oup.com/mnras/article/527/3/6473/7452888

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/387084423


Abstract
SN 2019neq was a very fast evolving superluminous supernova. At a redshift z = 0.1059, its peak absolute magnitude was -21.5 +/- 0.2 mag in g band. In this work, we present data and analysis from an extensive spectrophotometric follow-up campaign using multiple observational facilities. Thanks to a nebular spectrum of SN 2019neq, we investigated some of the properties of the host galaxy at the location of SN 2019neq and found that its metallicity and specific star formation rate are in a good agreement with those usually measured for SLSNe-I hosts. We then discuss the plausibility of the magnetar and the circumstellar interaction scenarios to explain the observed light curves, and interpret a nebular spectrum of SN 2019neq using published SUMO radiative-transfer models. The results of our analysis suggest that the spin-down radiation of a millisecond magnetar with a magnetic field B similar or equal to 6 x 10(14) G could boost the luminosity of SN 2019neq.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Last updated on 2024-02-04 at 13:19