A2 Refereed review article in a scientific journal
Inorganic carbon sensing and signalling in cyanobacteria
Authors: Kurkela Juha, Tyystjärvi Taina
Publisher: WILEY
Publishing place: HOBOKEN
Publication year: 2024
Journal: Physiologia Plantarum
Journal name in source: PHYSIOLOGIA PLANTARUM
Journal acronym: PHYSIOL PLANTARUM
Article number: e14140
Volume: 176
Issue: 1
Number of pages: 10
ISSN: 0031-9317
eISSN: 1399-3054
DOI: https://doi.org/10.1111/ppl.14140
Web address : https://doi.org/10.1111/ppl.14140
Self-archived copy’s web address: https://research.utu.fi/converis/portal/detail/Publication/387066255
Cyanobacteria utilize CO2 and HCO3- as inorganic carbon (Ci) sources. In low Ci, like in ambient air, cyanobacteria efficiently collect Ci using a carbon concentrating mechanism (CCM). The CCM includes bicarbonate transporters SbtA, BicA and BCT1; the specialized NDH complexes NDH-13 and NDH-14, which convert CO2 to HCO3- in the cytoplasm; and carboxysomes that are protein shell encapsulated ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) and carbonic anhydrase containing bodies in which the first reaction of carbon fixation occurs. Ci-dependent regulation of bicarbonate transporters and specialized NDH complexes, especially the regulation of the SbtA transporter, are well understood. CcmR (also called NdhR), CyAbrB2, CmpR and RbcR act as transcription factors regulating CCM genes. Ci signalling molecules detecting the metabolic status of the cells include 2-oxoglutarate, which accumulates when the Ci/nitrogen ratio of the cell is high, and 2-phosphoglycolate, the first intermediate of the photorespiration pathway, whose accumulation indicates low Ci. These signalling molecules act as corepressors and coactivators of the CcmR repressor protein, whereas 2-phosphoglycolate and ribulose-1,5-bisphosphate activate transcription activator CmpR. In addition, bicarbonate or CO2 activates the adenylyl cyclase that produces cAMP, and ATP/ADP/AMP provide information about the energy status of the cell. Less is known about the molecular mechanisms regulating carboxysome dynamics or how production, activity and degradation of photosynthetic complexes are regulated by prevailing Ci conditions or which mechanisms adjust cell division according to Ci. This minireview summarizes the present knowledge about molecular mechanisms regulating cyanobacterial acclimation to prevailing Ci.
Downloadable publication This is an electronic reprint of the original article. |