A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Comparison of simple augmentation transformations for a convolutional neural network classifying medical images




TekijätRainio Oona, Klen Riku

KustantajaSpringer Nature

Julkaisuvuosi2024

JournalSignal, Image and Video Processing

Tietokannassa oleva lehden nimiSIGNAL IMAGE AND VIDEO PROCESSING

Lehden akronyymiSIGNAL IMAGE VIDEO P

Vuosikerta18

Numero4

Aloitussivu3353

Lopetussivu3360

Sivujen määrä8

ISSN1863-1703

eISSN1863-1711

DOIhttps://doi.org/10.1007/s11760-024-02998-5

Verkko-osoitehttps://link.springer.com/article/10.1007/s11760-024-02998-5

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/387054079


Tiivistelmä
Simple image augmentation techniques, such as reflection, rotation, or translation, might work differently for medical images than they do for regular photographs due to the fundamental properties of medical imaging techniques and the bilateral symmetry of the human body. Here, we compare the predictions of a convolutional neural network (CNN) trained for binary classification by using either no augmentation or one of seven usual types augmentation. We have 11 different medical data sets, mostly related to lung infections or cancer, with X-rays, ultrasound (US) images, and images from positron emission tomography (PET) and magnetic resonance imaging (MRI). According to our results, the augmentation types do not produce statistically significant differences for US and PET data sets, but, for X-rays and MRI images, the best augmentation technique is adding Gaussian blur to images.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-25-03 at 11:01