A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Products of primes in arithmetic progressions




TekijätMatomäki Kaisa, Teräväinen Joni

KustantajaDe Gruyter

KustannuspaikkaBerlin

Julkaisuvuosi2024

JournalJournal fur die reine und angewandte mathematik

Tietokannassa oleva lehden nimiJOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK

Lehden akronyymiJ REINE ANGEW MATH

Vuosikerta2024

Numero808

Sivujen määrä48

ISSN0075-4102

eISSN1435-5345

DOIhttps://doi.org/10.1515/crelle-2023-0096

Verkko-osoitehttps://doi.org/10.1515/crelle-2023-0096

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/386942683

Preprintin osoitehttps://arxiv.org/abs/2301.07679


Tiivistelmä
A conjecture of Erdos states that, for any large prime q, every reduced residue class (mod q) can be represented as a product p(1) p(2) of two primes p(1) , p(2) <= q. We establish a ternary version of this conjecture, showing that, for any sufficiently large cube-free integer q, every reduced residue class ( mod q) can be written as p(1) p(2) p(3) with p 1 , p 2 , p 3 <= q primes. We also show that, for any epsilon > 0 and any sufficiently large integer q, at least (2/3 - epsilon) phi (q) reduced residue classes (mod q) can be represented as a product p(1)p(2) of two primes p 1 , p 2 <= q. The problems naturally reduce to studying character sums. The main innovation in the paper is the establishment of a multiplicative dense model theorem for character sums over primes in the spirit of the transference principle. In order to deal with possible local obstructions we establish bounds for the logarithmic density of primes in certain unions of cosets of subgroups of DOUBLE-STRUCK CAPITAL Z(q)(x) of small index and study in detail the exceptional case that there exists a quadratic character psi (mod q) such that psi (p) = - 1 for very many primes p <= q.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-06-03 at 09:41