A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Latent model extreme value index estimation




TekijätVirta Joni, Lietzén Niko, Viitasaari Lauri, Ilmonen Pauliina

KustantajaAcademic Press

Julkaisuvuosi2024

JournalJournal of Multivariate Analysis

Tietokannassa oleva lehden nimiJournal of Multivariate Analysis

Artikkelin numero105300

Vuosikerta202

ISSN0047-259X

eISSN1095-7243

DOIhttps://doi.org/10.1016/j.jmva.2024.105300

Verkko-osoitehttps://www.sciencedirect.com/science/article/pii/S0047259X24000071

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/386919386

Preprintin osoitehttps://arxiv.org/abs/2003.10330


Tiivistelmä
We propose a novel strategy for multivariate extreme value index estimation. In applications such as finance, volatility and risk of multivariate time series are often driven by the same underlying factors. To estimate the latent risks, we apply a two-stage procedure. First, a set of independent latent series is estimated using a method of latent variable analysis. Then, univariate risk measures are estimated individually for the latent series. We provide conditions under which the effect of the latent model estimation to the asymptotic behavior of the risk estimators is negligible. Simulations illustrate the theory under both i.i.d. and dependent data, and an application into currency exchange rate data shows that the method is able to discover extreme behavior not found by component-wise analysis of the original series.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-20-12 at 14:54