A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

On the Hyperbolic Metric of Certain Domains




TekijätHinkkanen Aimo, Vuorinen Matti

KustantajaSpringer Science and Business Media Deutschland GmbH

Julkaisuvuosi2024

JournalComputational Methods and Function Theory

Tietokannassa oleva lehden nimiComputational Methods and Function Theory

eISSN2195-3724

DOIhttps://doi.org/10.1007/s40315-023-00518-z

Verkko-osoitehttps://link.springer.com/article/10.1007/s40315-023-00518-z

Rinnakkaistallenteen osoitehttps://arxiv.org/abs/2303.08238

Preprintin osoitehttps://arxiv.org/abs/2303.08238v1


Tiivistelmä

We prove that if E is a compact subset of the unit disk D in the complex plane, if E contains a sequence of distinct points an≠ 0 for n≥ 1 such that lim n→∞an= 0 and for all n we have | an+1| ≥ | an| / 2 , and if G= D\ E is connected and 0 ∈ ∂G , then there is a constant c> 0 such that for all z∈ G we have λG(z) ≥ c/ | z| where λG(z) is the density of the hyperbolic metric in G.

© 2024, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.



Last updated on 2024-26-11 at 22:13