A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

External validation of a deep learning algorithm for automated echocardiographic strain measurements




TekijätMyhre Peder L, Hung Chung-Lieh, Frost Matthew J, Jiang Zhubo, Ouwerkerk Wouter, Teramoto Kanako, Svedlund Sara, Saraste Antti, Hage Camilla, Tan Ru-San, Beussink-Nelson Lauren, Fermer Maria L, Gan Li-Ming, Hummel Yoran M, Lund Lars H, Shah Sanjiv J, Lam Carolyn S P, Tromp Jasper

KustantajaOxford University Press

Julkaisuvuosi2023

JournalEuropean Heart Journal - Digital Health

Tietokannassa oleva lehden nimiEuropean Heart Journal - Digital Health

Vuosikerta5

Numero1

Aloitussivu60

Lopetussivu68

ISSN2634-3916

eISSN2634-3916

DOIhttps://doi.org/10.1093/ehjdh/ztad072

Verkko-osoitehttps://doi.org/10.1093/ehjdh/ztad072

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/386840823


Tiivistelmä

Aims: Echocardiographic strain imaging reflects myocardial deformation and is a sensitive measure of cardiac function and wall-motion abnormalities. Deep learning (DL) algorithms could automate the interpretation of echocardiographic strain imaging.

Methods and results: We developed and trained an automated DL-based algorithm for left ventricular (LV) strain measurements in an internal dataset. Global longitudinal strain (GLS) was validated externally in (i) a real-world Taiwanese cohort of participants with and without heart failure (HF), (ii) a core-lab measured dataset from the multinational prevalence of microvascular dysfunction-HF and preserved ejection fraction (PROMIS-HFpEF) study, and regional strain in (iii) the HMC-QU-MI study of patients with suspected myocardial infarction. Outcomes included measures of agreement [bias, mean absolute difference (MAD), root-mean-squared-error (RMSE), and Pearson's correlation (R)] and area under the curve (AUC) to identify HF and regional wall-motion abnormalities. The DL workflow successfully analysed 3741 (89%) studies in the Taiwanese cohort, 176 (96%) in PROMIS-HFpEF, and 158 (98%) in HMC-QU-MI. Automated GLS showed good agreement with manual measurements (mean ± SD): -18.9 ± 4.5% vs. -18.2 ± 4.4%, respectively, bias 0.68 ± 2.52%, MAD 2.0 ± 1.67, RMSE = 2.61, R = 0.84 in the Taiwanese cohort; and -15.4 ± 4.1% vs. -15.9 ± 3.6%, respectively, bias -0.65 ± 2.71%, MAD 2.19 ± 1.71, RMSE = 2.78, R = 0.76 in PROMIS-HFpEF. In the Taiwanese cohort, automated GLS accurately identified patients with HF (AUC = 0.89 for total HF and AUC = 0.98 for HF with reduced ejection fraction). In HMC-QU-MI, automated regional strain identified regional wall-motion abnormalities with an average AUC = 0.80.

Conclusion: DL algorithms can interpret echocardiographic strain images with similar accuracy as conventional measurements. These results highlight the potential of DL algorithms to democratize the use of cardiac strain measurements and reduce time-spent and costs for echo labs globally.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-27-03 at 22:04