A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

On some type of stability for multicriteria integer linear programming problrm of finding extremum solutions




TekijätEmelichev Vladimir, Nikulin Yury

KustantajaV.I. Vernadsky Crimean Federal University

Julkaisuvuosi2018

JournalTavričeskij vestnik informatiki i matematiki : Taurida Journal of Computer Science Theory and Mathematics

Numero2

Aloitussivu17

Lopetussivu28

eISSN1729-3901

Verkko-osoitehttp://tvim.info/files/journal/tvim_2018_2.pdf


Tiivistelmä

We consider a wide class of linear optimization problems with integer variables. In this paper, the lower and upper attainable bounds on the T2-stability radius of the set of extremum solutions are obtained in the situation where solution space and criterion space are endowed with various Hölder’s norms. As corollaries, the T2-stability criterion is formulated, and, furthermore, the T2-stability radius formula is specified for the case where criterion space is endowed with Chebyshev’s norm.



Last updated on 2024-26-11 at 15:44