A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Conformally invariant metrics and lack of Hölder continuity




TekijätKargar Rahim, Rainio Oona

KustantajaSpringer

Julkaisuvuosi2024

JournalBulletin of the Malaysian Mathematical Sciences Society

Lehden akronyymiBull. Malays. Math. Sci. Soc.

Artikkelin numero48

Vuosikerta47

eISSN2180-4206

DOIhttps://doi.org/10.1007/s40840-023-01648-2

Verkko-osoitehttps://link.springer.com/article/10.1007/s40840-023-01648-2

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/381031473


Tiivistelmä

The modulus metric between two points in a subdomain of Rn, n ≥ 2, is defined in terms of moduli of curve families joining the boundary of the domain with a continuum connecting the two points. This metric is one of the conformally invariant hyperbolictype metrics that have become a standard tool in geometric function theory. We prove that the modulus metric is not Hölder continuous with respect to the hyperbolic metric.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 18:29