A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Data and systems for medication-related text classification and concept normalization from Twitter: insights from the Social Media Mining for Health (SMM4H)-2017 shared task




TekijätAbeed Sarker, Maksim Belousov, Jasper Friedrichs, Kai Hakala, Svetlana Kiritchenko, Farrokh Mehryary, Sifei Han, Tung Tran, Anthony Rios, Ramakanth Kavuluru, Berry de Bruijn, Filip Ginter, Debanjan Mahata, Saif M. Mohammad, Goran Nenadic, Graciela Gonzalez-Hernandez

KustantajaOXFORD UNIV PRESS

Julkaisuvuosi2018

JournalJournal of the American Medical Informatics Association

Tietokannassa oleva lehden nimiJOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION

Lehden akronyymiJ AM MED INFORM ASSN

Vuosikerta25

Numero10

Aloitussivu1274

Lopetussivu1283

Sivujen määrä10

ISSN1067-5027

DOIhttps://doi.org/10.1093/jamia/ocy114

Verkko-osoitehttps://academic.oup.com/jamia/article/25/10/1274/5113021

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/36971574


Tiivistelmä
Objective: We executed the Social Media Mining for Health (SMM4H) 2017 shared tasks to enable the community-driven development and large-scale evaluation of automatic text processing methods for the classification and normalization of health-related text from social media. An additional objective was to publicly release manually annotated data.
Materials and Methods: We organized 3 independent subtasks: automatic classification of self-reports of 1) adverse drug reactions (ADRs) and 2) medication consumption, from medication-mentioning tweets, and 3) normalization of ADR expressions. Training data consisted of 15 717 annotated tweets for (1), 10 260 for (2), and 6650 ADR phrases and identifiers for (3); and exhibited typical properties of social-media-based health-related texts. Systems were evaluated using 9961, 7513, and 2500 instances for the 3 subtasks, respectively. We evaluated performances of classes of methods and ensembles of system combinations following the shared tasks.
Results: Among 55 system runs, the best system scores for the 3 subtasks were 0.435 (ADR class F1-score) for subtask-1, 0.693 (micro-averaged F1-score over two classes) for subtask-2, and 88.5% (accuracy) for subtask-3. Ensembles of system combinations obtained best scores of 0.476, 0.702, and 88.7%, outperforming individual systems.
Discussion: Among individual systems, support vector machines and convolutional neural networks showed high performance. Performance gains achieved by ensembles of system combinations suggest that such strategies may be suitable for operational systems relying on difficult text classification tasks (eg, subtask-1).Conclusions: Data imbalance and lack of context remain challenges for natural language processing of social media text. Annotated data from the shared task have been made available as reference standards for future studies (http://dx.doi.org/10.17632/rxwfb3tysd.1).

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 18:14