A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Weakly Quasisymmetric Maps and Uniform Spaces
Tekijät: Li YX, Vuorinen M, Zhou QS
Kustantaja: SPRINGER HEIDELBERG
Julkaisuvuosi: 2018
Journal: Computational Methods and Function Theory
Tietokannassa oleva lehden nimi: COMPUTATIONAL METHODS AND FUNCTION THEORY
Lehden akronyymi: COMPUT METH FUNCT TH
Vuosikerta: 18
Numero: 4
Aloitussivu: 689
Lopetussivu: 715
Sivujen määrä: 27
ISSN: 1617-9447
DOI: https://doi.org/10.1007/s40315-018-0248-0
Rinnakkaistallenteen osoite: https://arxiv.org/abs/1705.05671
Tiivistelmä
Suppose that X and Y are quasiconvex and complete metric spaces, that is a homeomorphism. In this paper, we first give some basic properties of short arcs, and then we show that if f is a weakly quasisymmetric mapping and is a quasiconvex domain, then the image f(D) of every uniform subdomain D in G is uniform. As an application, we get t is a uniform domain, then the images of the short arcs in G under f are uniform arcs in the sense of diameter.
Suppose that X and Y are quasiconvex and complete metric spaces, that is a homeomorphism. In this paper, we first give some basic properties of short arcs, and then we show that if f is a weakly quasisymmetric mapping and is a quasiconvex domain, then the image f(D) of every uniform subdomain D in G is uniform. As an application, we get t is a uniform domain, then the images of the short arcs in G under f are uniform arcs in the sense of diameter.