A1 Refereed original research article in a scientific journal

Receptor tyrosine kinase profiling of ischemic heart identifies ROR1 as a potential therapeutic target




AuthorsJuho Heliste, Anne Jokilammi, Ilkka Paatero, Deepankar Chakroborty, Christoffer Stark, Timo Savunen, Maria Laaksonen, Klaus Elenius

PublisherBMC

Publishing placeLondon, England

Publication year2018

JournalBMC Cardiovascular Disorders

Journal name in sourceBMC CARDIOVASCULAR DISORDERS

Journal acronymBMC Cardiovasc Disord

Article number196

Volume18

Number of pages12

ISSN1471-2261

eISSN1471-2261

DOIhttps://doi.org/10.1186/s12872-018-0933-y

Web address https://bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-018-0933-y

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/36509626


Abstract
BackgroundReceptor tyrosine kinases (RTK) are potential targets for the treatment of ischemic heart disease. The human RTK family consists of 55 members, most of which have not yet been characterized for expression or activity in the ischemic heart.MethodsRTK gene expression was analyzed from human heart samples representing healthy tissue, acute myocardial infarction or ischemic cardiomyopathy. As an experimental model, pig heart with ischemia-reperfusion injury, caused by cardiopulmonary bypass,was used, from which phosphorylation status of RTKs was assessed with a phospho-RTK array. Expression and function of one RTK, ROR1, was further validated in pig tissue samples, and in HL-1 cardiomyocytes and H9c2 cardiomyoblasts, exposed to hypoxia and reoxygenation. ROR1 protein level was analyzed by Western blotting. Cell viability after ROR1 siRNA knockdown or activation with Wnt-5a ligand was assessed by MTT assays.ResultsIn addition to previously characterized RTKs, a group of novel active and regulated RTKs was detected in the ischemic heart. ROR1 was the most significantly upregulated RTK in human ischemic cardiomyopathy. However, ROR1 phosphorylation was suppressed in the pig model of ischemia-reperfusion and ROR1 phosphorylation and expression were down-regulated in HL-1 cardiomyocytes subjected to short-term hypoxia in vitro. ROR1 expression in the pig heart was confirmed on protein and mRNA level. Functionally, ROR1 activity was associated with reduced viability of HL-1 cardiomyocytes in both normoxia and during hypoxia-reoxygenation.ConclusionsSeveral novel RTKs were found to be regulated in expression or activity in ischemic heart. ROR1 was one of the most significantly regulated RTKs. The in vitro findings suggest a role for ROR1 as a potential target for the treatment of ischemic heart injury.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 17:05