A1 Refereed original research article in a scientific journal

Binocular disparity can augment the capacity of vision without affecting subjective experience of depth




AuthorsHenry Railo, Joni Saastamoinen, Sipi Kylmälä, Aapo Peltola

PublisherNATURE PUBLISHING GROUP

Publication year2018

JournalScientific Reports

Journal name in sourceSCIENTIFIC REPORTS

Journal acronymSCI REP-UK

Article numberARTN 15798

Volume8

Number of pages9

ISSN2045-2322

DOIhttps://doi.org/10.1038/s41598-018-34137-9

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/36478514


Abstract
Binocular disparity results in a tangible subjective experience of three-dimensional world, but whether disparity also augments objective perceptual performance remains debated. We hypothesized that the improved coding of depth enabled by binocular disparity allows participants to individuate more objects at a glance as the objects can be more efficiently differentiated from each other and the background. We asked participants to enumerate objects in briefly presented naturalistic (Experiment 1) and artificial (Experiment 2) scenes in immersive virtual reality. This type of enumeration task yields well-documented capacity limits where up to 3-4 items can be enumerated rapidly and accurately, known as subitizing. Our results show that although binocular disparity did not yield a large general improvement in enumeration accuracy or reaction times, it improved participants' ability to process the items right after the limit of perceptual capacity. Binocular disparity also sped-up response times by 27 ms on average when artificial stimuli (cubes) were used. Interestingly, the influence of disparity on subjectively experienced depth revealed a clearly different pattern than the influence of disparity on objective performance. This suggests that the functional and subjective sides of stereopsis can be dissociated. Altogether our results suggest that binocular disparity may increase the number of items the visual system can simultaneously process. This may help animals to better resolve and track objects in complex, cluttered visual environments.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 19:13