A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Region of variability for certain classes of univalent functions satisfying differential inequalities




TekijätPonnusamy S., Vasudevarao A., Vuorinen M.

Julkaisuvuosi2009

JournalComplex Variables and Elliptic Equations

Tietokannassa oleva lehden nimiComplex Variables and Elliptic Equations

Vuosikerta54

Numero10

Aloitussivu899

Lopetussivu922

Sivujen määrä24

ISSN1747-6933

DOIhttps://doi.org/10.1080/17476930802657616

Verkko-osoitehttp://api.elsevier.com/content/abstract/scopus_id:75249100943


Tiivistelmä
For complex numbers α, β and M ∈ ℝ with 0 < M ≤ {pipe}α{pipe} and {pipe}β{pipe} ≤ 1, let B(α, β, M) be the class of analytic and univalent functions f in the unit disk D with f(0) = 0, f′(0) = α and f″(0) = Mβ satisfying {pipe}zf″(z){pipe} ≤ M, z ∈ D. Let P(α, M) be the another class of analytic and univalent functions in D with f(0) = 0, f′(0) = α satisfying Re(zf″(z)) > -M, z ∈ D, where α ∈ ℂ\{0}, 0 < M ≤ 1/log 4. For any fixed z ∈ D, and λ ∈ D̄ we shall determine the region of variability V (j = 1, 2) for f′(z) when f ranges over the class S (j = 1, 2), where In the final section we graphically illustrate the region of variability for several sets of parameters. © 2009 Taylor & Francis.



Last updated on 2024-26-11 at 20:45