A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

On Mori's theorem for quasiconformal maps in the n-space




TekijätBhayo B, Vuorinen M

KustantajaAMER MATHEMATICAL SOC

Julkaisuvuosi2011

JournalTransactions of the American Mathematical Society

Tietokannassa oleva lehden nimiTransactions of the American Mathematical Society

Lehden akronyymiT AM MATH SOC

Numero sarjassa11

Vuosikerta363

Numero11

Aloitussivu5703

Lopetussivu5719

Sivujen määrä17

ISSN0002-9947

DOIhttps://doi.org/10.1090/S0002-9947-2011-05281-5

Verkko-osoitehttp://api.elsevier.com/content/abstract/scopus_id:79960794592


Tiivistelmä
R. Fehlmann and M. Vuorinen proved in 1988 that Mori's constant M(n,K) for K-quasiconformal maps of the unit ball in Rn onto itself keeping the origin fixed satisfies M(n,K) → 1 when K → 1. Here we give an alternative proof of this fact, with a quantitative upper bound for the constant in terms of elementary functions. Our proof is based on a refinement of a method due to G.D. Anderson and M. K. Vamanamurthy. We also give an explicit version of the Schwarz lemma for quasiconformal self-maps of the unit disk. Some experimental results are provided to compare the various bounds for the Mori constant when n = 2. © 2011 American Mathematical Society.



Last updated on 2024-26-11 at 13:13