A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

An optimal bound on the solution sets of one-variable word equations and its consequences




TekijätNowotka Dirk, Saarela Aleksi

ToimittajaIoannis Chatzigiannakis, Christos Kaklamanis, Daniel Marx, Donald Sannella

Konferenssin vakiintunut nimiInternational Colloquium on Automata, Languages and Programming

KustantajaSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

Julkaisuvuosi2018

JournalLIPICS – Leibniz international proceedings in informatics

Kokoomateoksen nimi45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)

Tietokannassa oleva lehden nimiLeibniz International Proceedings in Informatics, LIPIcs

Sarjan nimiLIPIcs: Leibniz International Proceedings in Informatics

Vuosikerta107

Aloitussivu136:1

Lopetussivu136:13

ISBN978-3-95977-076-7

ISSN1868-8969

DOIhttps://doi.org/10.4230/LIPIcs.ICALP.2018.136

Verkko-osoitehttp://drops.dagstuhl.de/opus/volltexte/2018/9140

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/35729244


Tiivistelmä

We solve two long-standing open problems on word equations. Firstly, we prove that a onevariable word equation with constants has either at most three or an infinite number of solutions. The existence of such a bound had been conjectured, and the bound three is optimal. Secondly, we consider independent systems of three-variable word equations without constants. If such a system has a nonperiodic solution, then this system of equations is at most of size 17. Although probably not optimal, this is the first finite bound found. However, the conjecture of that bound being actually two still remains open.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 12:18