A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
On dynamical complexity of surjective ultimately right-expansive cellular automata
Tekijät: Joonatan Jalonen, Jarkko Kari
Toimittaja: Jan M. Baetens, Martin Kutrib
Konferenssin vakiintunut nimi: International Workshop on Cellular Automata and Discrete Complex Systems
Kustantaja: Springer Verlag
Julkaisuvuosi: 2018
Journal: Lecture Notes in Computer Science
Kokoomateoksen nimi: Cellular Automata and Discrete Complex Systems
Tietokannassa oleva lehden nimi: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Vuosikerta: 10875
Aloitussivu: 57
Lopetussivu: 71
Sivujen määrä: 15
ISBN: 978-3-319-92674-2
eISBN: 978-3-319-92675-9
ISSN: 0302-9743
DOI: https://doi.org/10.1007/978-3-319-92675-9_5
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/35726676
We prove that surjective ultimately right-expansive cellular automata over full shifts are chain-transitive. This immediately implies Boyle’s result that expansive cellular automata are chain-transitive. This means that the chain-recurrence assumption can be dropped from Nasu’s result that surjective ultimately right-expansive cellular automata with right-sided neighborhoods have the pseudo-orbit tracing property, which also implies that the (canonical) trace subshift is sofic. We also provide a theorem with a simple proof that comprises many known results including aforementioned result by Nasu. Lastly we show that there exists a right-expansive reversible cellular automaton that has a non-sofic trace and thus does not have the pseudo-orbit tracing property. In this paper we only consider cellular automata over full shifts, while both Nasu and Boyle obtain their results over more general shift spaces.
Ladattava julkaisu This is an electronic reprint of the original article. |