A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Clustering in large data sets with the limited memory bundle method




TekijätNapsu Karmitsa, Adil M. Bagirov, Sona Taheri

KustantajaELSEVIER SCI LTD

Julkaisuvuosi2018

JournalPattern Recognition

Tietokannassa oleva lehden nimiPATTERN RECOGNITION

Lehden akronyymiPATTERN RECOGN

Vuosikerta83

Aloitussivu245

Lopetussivu259

Sivujen määrä15

ISSN0031-3203

eISSN1873-5142

DOIhttps://doi.org/10.1016/j.patcog.2018.05.028

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/35725660


Tiivistelmä
The aim of this paper is to design an algorithm based on nonsmooth optimization techniques to solve the minimum sum-of-squares clustering problems in very large data sets. First, the clustering problem is formulated as a nonsmooth optimization problem. Then the limited memory bundle method [Haarala et al., 2007] is modified and combined with an incremental approach to design a new clustering algorithm. The algorithm is evaluated using real world data sets with both the large number of attributes and the large number of data points. It is also compared with some other optimization based clustering algorithms. The numerical results demonstrate the efficiency of the proposed algorithm for clustering in very large data sets.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 21:36