A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Generalized convexity and inequalities




TekijätAnderson G., Vamanamurthy M., Vuorinen M.

Julkaisuvuosi2007

JournalJournal of Mathematical Analysis and Applications

Tietokannassa oleva lehden nimiJournal of Mathematical Analysis and Applications

Vuosikerta335

Numero2

Aloitussivu1294

Lopetussivu1308

Sivujen määrä15

ISSN0022-247X

DOIhttps://doi.org/10.1016/j.jmaa.2007.02.016

Verkko-osoitehttp://api.elsevier.com/content/abstract/scopus_id:34447529172


Tiivistelmä
Let R = (0, ∞) and let M be the family of all mean values of two numbers in R (some examples are the arithmetic, geometric, and harmonic means). Given m, m ∈ M, we say that a function f : R → R is (m, m)-convex if f (m (x, y)) ≤ m (f (x), f (y)) for all x, y ∈ R. The usual convexity is the special case when both mean values are arithmetic means. We study the dependence of (m, m)-convexity on m and m and give sufficient conditions for (m, m)-convexity of functions defined by Maclaurin series. The criteria involve the Maclaurin coefficients. Our results yield a class of new inequalities for several special functions such as the Gaussian hypergeometric function and a generalized Bessel function. © 2007 Elsevier Inc. All rights reserved.



Last updated on 2024-26-11 at 18:53