A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Statistics of orthogonality catastrophe events in localised disordered lattices




TekijätCosco F, Borrelli M, Laine EM, Pascazio S, Scardicchio A, Maniscalco S

KustantajaIOP PUBLISHING LTD

Julkaisuvuosi2018

JournalNew Journal of Physics

Tietokannassa oleva lehden nimiNEW JOURNAL OF PHYSICS

Lehden akronyymiNEW J PHYS

Artikkelin numeroARTN 073041

Vuosikerta20

Aloitussivu1

Lopetussivu11

Sivujen määrä11

ISSN1367-2630

DOIhttps://doi.org/10.1088/1367-2630/aad10b

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/35452613


Tiivistelmä
We address the phenomenon of statistical orthogonality catastrophe in insulating disordered systems. In more detail, we analyse the response of a system of non-interacting fermions to a local perturbation induced by an impurity. By inspecting the overlap between the pre- and post-quench many-body ground states we fully characterise the emergent statistics of orthogonality events as a function of both the impurity position and the coupling strength. We consider two well-known one-dimensional models, namely the Anderson and Aubry-Andre insulators, highlighting the arising differences. Particularly, in the Aubry-Andre model the highly correlated nature of the quasi-periodic potential produces unexpected features in how the orthogonality catastrophe occurs. We provide a quantitative explanation of such features via a simple, effective model. We further discuss the incommensurate ratio approximation and suggest a viable experimental verification in terms of charge transfer statistics and interferometric experiments using quantum probes.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 10:28