A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Statistics of orthogonality catastrophe events in localised disordered lattices
Tekijät: Cosco F, Borrelli M, Laine EM, Pascazio S, Scardicchio A, Maniscalco S
Kustantaja: IOP PUBLISHING LTD
Julkaisuvuosi: 2018
Journal: New Journal of Physics
Tietokannassa oleva lehden nimi: NEW JOURNAL OF PHYSICS
Lehden akronyymi: NEW J PHYS
Artikkelin numero: ARTN 073041
Vuosikerta: 20
Aloitussivu: 1
Lopetussivu: 11
Sivujen määrä: 11
ISSN: 1367-2630
DOI: https://doi.org/10.1088/1367-2630/aad10b
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/35452613
We address the phenomenon of statistical orthogonality catastrophe in insulating disordered systems. In more detail, we analyse the response of a system of non-interacting fermions to a local perturbation induced by an impurity. By inspecting the overlap between the pre- and post-quench many-body ground states we fully characterise the emergent statistics of orthogonality events as a function of both the impurity position and the coupling strength. We consider two well-known one-dimensional models, namely the Anderson and Aubry-Andre insulators, highlighting the arising differences. Particularly, in the Aubry-Andre model the highly correlated nature of the quasi-periodic potential produces unexpected features in how the orthogonality catastrophe occurs. We provide a quantitative explanation of such features via a simple, effective model. We further discuss the incommensurate ratio approximation and suggest a viable experimental verification in terms of charge transfer statistics and interferometric experiments using quantum probes.
Ladattava julkaisu This is an electronic reprint of the original article. |