On the density of identifying codes in the square lattice
: Honkala I, Lobstein A
Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCE
: 2002
: Journal of Combinatorial Theory, Series B
: JOURNAL OF COMBINATORIAL THEORY SERIES B
: J COMB THEORY B
: 85
: 2
: 297
: 306
: 10
: 0095-8956
DOI: https://doi.org/10.1006/jctb.2001.2106
Let G = (V, E) be an undirected graph and C a subset of vertices. If the sets B-r(nu) boolean AND C, nu is an element of V, are all nonempty and different, where B-r(nu) denotes the set of all points within distance r from nu, we call C an r-identifying code. We give bounds on the best possible density of r-identifying codes in the two-dimensional square lattice. (C) 2002 Elsevier Science (USA).