A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
On the density of identifying codes in the square lattice
Tekijät: Honkala I, Lobstein A
Kustantaja: ACADEMIC PRESS INC ELSEVIER SCIENCE
Julkaisuvuosi: 2002
Journal: Journal of Combinatorial Theory, Series B
Tietokannassa oleva lehden nimi: JOURNAL OF COMBINATORIAL THEORY SERIES B
Lehden akronyymi: J COMB THEORY B
Vuosikerta: 85
Numero: 2
Aloitussivu: 297
Lopetussivu: 306
Sivujen määrä: 10
ISSN: 0095-8956
DOI: https://doi.org/10.1006/jctb.2001.2106
Tiivistelmä
Let G = (V, E) be an undirected graph and C a subset of vertices. If the sets B-r(nu) boolean AND C, nu is an element of V, are all nonempty and different, where B-r(nu) denotes the set of all points within distance r from nu, we call C an r-identifying code. We give bounds on the best possible density of r-identifying codes in the two-dimensional square lattice. (C) 2002 Elsevier Science (USA).
Let G = (V, E) be an undirected graph and C a subset of vertices. If the sets B-r(nu) boolean AND C, nu is an element of V, are all nonempty and different, where B-r(nu) denotes the set of all points within distance r from nu, we call C an r-identifying code. We give bounds on the best possible density of r-identifying codes in the two-dimensional square lattice. (C) 2002 Elsevier Science (USA).