A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Shifted inverse determinant sums and new bounds for the DMT of space-time lattice codes




TekijätRoope Vehkalahti, Laura Luzzi, Jean-Claude Belfiore

Konferenssin vakiintunut nimiIEEE International Symposium on Information Theory

KustantajaInstitute of Electrical and Electronics Engineers Inc.

Julkaisuvuosi2014

Kokoomateoksen nimiInformation Theory (ISIT), 2014 IEEE International Symposium on

Tietokannassa oleva lehden nimiIEEE International Symposium on Information Theory - Proceedings

Aloitussivu2331

Lopetussivu2335

Sivujen määrä5

ISBN978-1-4799-5186-4

DOIhttps://doi.org/10.1109/ISIT.2014.6875250

Verkko-osoitehttp://api.elsevier.com/content/abstract/scopus_id:84906536016


Tiivistelmä

This paper considers shifted inverse determinant sums arising from the union bound of the pairwise error probability for space-time codes in multiple-antenna fading channels. Previous work by Vehkalahti et al. focused on the approximation of these sums for low multiplexing gains, providing a complete classification of the inverse determinant sums as a function of constellation size for the most well-known algebraic space-time codes. This work aims at building a general framework for the study of the shifted sums for all multiplexing gains. New bounds obtained using dyadic summing techniques suggest that the behavior of the shifted sums does characterize many properties of a lattice code such as the diversity-multiplexing gain trade-off, both under maximum-likelihood decoding and infinite lattice naive decoding. Moreover, these bounds allow to characterize the signal-to-noise ratio thresholds corresponding to different diversity gains. © 2014 IEEE.




Last updated on 2024-26-11 at 12:49