A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
Constructions a of lattices from number fields and division algebras
Tekijät: Roope Vehkalahti, Wittawat Kositwattanarerk, Frédérique Oggier
Konferenssin vakiintunut nimi: IEEE International Symposium on Information Theory
Kustantaja: Institute of Electrical and Electronics Engineers Inc.
Julkaisuvuosi: 2014
Kokoomateoksen nimi: Information Theory (ISIT), 2014 IEEE International Symposium on
Tietokannassa oleva lehden nimi: IEEE International Symposium on Information Theory - Proceedings
Aloitussivu: 2326
Lopetussivu: 2330
Sivujen määrä: 5
ISBN: 978-1-4799-5186-4
DOI: https://doi.org/10.1109/ISIT.2014.6875249
Verkko-osoite: http://api.elsevier.com/content/abstract/scopus_id:84906536017
There is a rich theory of relations between lattices and linear codes over finite fields. However, this theory has been developed mostly with lattice codes for the Gaussian channel in mind. In particular, different versions of what is called Construction A have connected the Hamming distance of the linear code to the Euclidean structure of the lattice. This paper concentrates on developing a similar theory, but for fading channel coding instead. First, two versions of Construction A from number fields are given. These are then extended to division algebra lattices. Instead of the Euclidean distance, the Hamming distance of the finite codes is connected to the product distance of the resulting lattices, that is the minimum product distance and the minimum determinant respectively. © 2014 IEEE.