A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Constructions a of lattices from number fields and division algebras




TekijätRoope Vehkalahti, Wittawat Kositwattanarerk, Frédérique Oggier

Konferenssin vakiintunut nimiIEEE International Symposium on Information Theory

KustantajaInstitute of Electrical and Electronics Engineers Inc.

Julkaisuvuosi2014

Kokoomateoksen nimiInformation Theory (ISIT), 2014 IEEE International Symposium on

Tietokannassa oleva lehden nimiIEEE International Symposium on Information Theory - Proceedings

Aloitussivu2326

Lopetussivu2330

Sivujen määrä5

ISBN978-1-4799-5186-4

DOIhttps://doi.org/10.1109/ISIT.2014.6875249

Verkko-osoitehttp://api.elsevier.com/content/abstract/scopus_id:84906536017


Tiivistelmä

There is a rich theory of relations between lattices and linear codes over finite fields. However, this theory has been developed mostly with lattice codes for the Gaussian channel in mind. In particular, different versions of what is called Construction A have connected the Hamming distance of the linear code to the Euclidean structure of the lattice. This paper concentrates on developing a similar theory, but for fading channel coding instead. First, two versions of Construction A from number fields are given. These are then extended to division algebra lattices. Instead of the Euclidean distance, the Hamming distance of the finite codes is connected to the product distance of the resulting lattices, that is the minimum product distance and the minimum determinant respectively. © 2014 IEEE.




Last updated on 2024-26-11 at 19:28