On Isometries of Conformally Invariant Metrics
: Riku Klén, Matti Vuorinen, Xiaohui Zhang
Publisher: SPRINGER
: 2016
: Journal of Geometric Analysis
: 26
: 2
: 914
: 923
: 10
: 1050-6926
: 1559-002X
DOI: https://doi.org/10.1007/s12220-015-9577-7
We prove that isometries in a conformally invariant metric of a general domain are quasiconformal. In the particular case of the punctured space, we prove that isometries in this metric are Möbius, thus resolving a conjecture of Ferrand et al. (J Anal Math 56: 187–120, 1991) in this particular case.