A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Extrapolation and interpolation in generalized Orlicz spaces




TekijätDavid Cruz-Uribe, Peter Hästö

KustantajaAMER MATHEMATICAL SOC

Julkaisuvuosi2018

JournalTransactions of the American Mathematical Society

Tietokannassa oleva lehden nimiTRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY

Lehden akronyymiT AM MATH SOC

Vuosikerta370

Numero6

Aloitussivu4323

Lopetussivu4349

Sivujen määrä27

ISSN0002-9947

DOIhttps://doi.org/10.1090/tran/7155

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/31020732


Tiivistelmä
We prove versions of the Rubio de Francia extrapolation theorem in generalized Orlicz spaces. As a consequence, we obtain boundedness results for several classical operators as well as a Sobolev inequality in this setting. We also study complex interpolation in the same setting and use it to derive a compact embedding theorem. Our results include as special cases classical Lebesgue and Sobolev space estimates and their variable exponent and double phase growth analogs.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 22:45