A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Extrapolation and interpolation in generalized Orlicz spaces




Julkaisun tekijät: David Cruz-Uribe, Peter Hästö

Kustantaja: AMER MATHEMATICAL SOC

Julkaisuvuosi: 2018

Journal: Transactions of the American Mathematical Society

Tietokannassa oleva lehden nimi: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY

Lehden akronyymi: T AM MATH SOC

Volyymi: 370

Julkaisunumero: 6

Sivujen määrä: 27

ISSN: 0002-9947

DOI: http://dx.doi.org/10.1090/tran/7155


Tiivistelmä
We prove versions of the Rubio de Francia extrapolation theorem in generalized Orlicz spaces. As a consequence, we obtain boundedness results for several classical operators as well as a Sobolev inequality in this setting. We also study complex interpolation in the same setting and use it to derive a compact embedding theorem. Our results include as special cases classical Lebesgue and Sobolev space estimates and their variable exponent and double phase growth analogs.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Last updated on 2021-24-06 at 11:23