A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Extrapolation and interpolation in generalized Orlicz spaces
Tekijät: David Cruz-Uribe, Peter Hästö
Kustantaja: AMER MATHEMATICAL SOC
Julkaisuvuosi: 2018
Journal: Transactions of the American Mathematical Society
Tietokannassa oleva lehden nimi: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
Lehden akronyymi: T AM MATH SOC
Vuosikerta: 370
Numero: 6
Aloitussivu: 4323
Lopetussivu: 4349
Sivujen määrä: 27
ISSN: 0002-9947
DOI: https://doi.org/10.1090/tran/7155
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/31020732
We prove versions of the Rubio de Francia extrapolation theorem in generalized Orlicz spaces. As a consequence, we obtain boundedness results for several classical operators as well as a Sobolev inequality in this setting. We also study complex interpolation in the same setting and use it to derive a compact embedding theorem. Our results include as special cases classical Lebesgue and Sobolev space estimates and their variable exponent and double phase growth analogs.
Ladattava julkaisu This is an electronic reprint of the original article. |