A1 Refereed original research article in a scientific journal

Structure-Activity Relationship Analysis of 3-Phenylcoumarin-Based Monoamine Oxidase B Inhibitors




AuthorsSanna Rauhamäki, Pekka A. Postila, Sanna Niinivehmas, Sami Kortet, Emmi Schildt, Mira Pasanen, Elangovan Manivannan, Mira Ahinko, Pasi Koskimies, Niina Nyberg, Pasi Huuskonen, Elina Multamäki, Markku Pasanen, Risto O. Juvonen, Hannu Raunio, Juhani Huuskonen, Olli T. Pentikäinen

PublisherFRONTIERS MEDIA SA

Publication year2018

JournalFrontiers in Chemistry

Journal name in sourceFRONTIERS IN CHEMISTRY

Journal acronymFRONT CHEM

Article numberARTN 41

Volume6

Number of pages18

ISSN2296-2646

eISSN2296-2646

DOIhttps://doi.org/10.3389/fchem.2018.00041

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/30711695


Abstract
Monoamine oxidase B (MAO-B) catalyzes deamination of monoamines such as neurotransmitters dopamine and norepinephrine. Accordingly, small-molecule MAO-B inhibitors potentially alleviate the symptoms of dopamine-linked neuropathologies such as depression or Parkinson's disease. Coumarin with a functionalized 3-phenyl ring system is a promising scaffold for building potent MAO-B inhibitors. Here, a vast set of 3-phenylcoumarin derivatives was designed using virtual combinatorial chemistry or rationally de novo and synthesized using microwave chemistry. The derivatives inhibited the MAO-B at 100 nM-1 mu M. The IC50 value of the most potent derivative 1 was 56 nM. A docking-based structure-activity relationship analysis summarizes the atom-level determinants of the MAO-B inhibition by the derivatives. Finally, the cross-reactivity of the derivatives was tested against monoamine oxidase A and a specific subset of enzymes linked to estradiol metabolism, known to have coumarin-based inhibitors. Overall, the results indicate that the 3-phenylcoumarins, especially derivative 1, present unique pharmacological features worth considering in future drug development.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 18:37