A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Efficient cross-validation for kernelized least-squares regression with sparse basis expansions




TekijätPahikkala T, Suominen H, Boberg J

KustantajaSpringer Netherlands

Julkaisuvuosi2012

JournalMachine Learning

Tietokannassa oleva lehden nimiMachine Learning

Numero sarjassa3

Vuosikerta87

Numero3

Aloitussivu381

Lopetussivu407

Sivujen määrä27

ISSN0885-6125

DOIhttps://doi.org/10.1007/s10994-012-5287-6

Verkko-osoitehttp://dx.doi.org/10.1007/s10994-012-5287-6

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/3042008


Tiivistelmä
We propose an efficient algorithm for calculating hold-out and cross-validation (CV) type of estimates for sparse regularized least-squares predictors. Holding out H data points with our method requires O(min(H^2n,Hn^2)) time provided that a predictor with n basis vectors is already trained. In addition to holding out training examples, also some of the basis vectors used to train the sparse regularized least-squares predictor with the whole training set can be removed from the basis vector set used in the hold-out computation. In our experiments, we demonstrate the speed improvements provided by our algorithm in practice, and we empirically show the benefits of removing some of the basis vectors during the CV rounds.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 20:08