A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Speedy Local Search for Semi-Supervised Regularized Least-Squares




TekijätGieseke F, Kramer O, Airola A, Pahikkala T

ToimittajaJoscha Bach, Stefan Edelkamp

Konferenssin vakiintunut nimi34th Annual German Conference on AI

Julkaisuvuosi2011

JournalLecture Notes in Computer Science

Kokoomateoksen nimiKI 2011: Advances in Artificial Intelligence: 34th Annual German Conference on AI, Berlin, Germany, October 4-7,2011. Proceedings

Tietokannassa oleva lehden nimiKI 2011: ADVANCES IN ARTIFICIAL INTELLIGENCE

Lehden akronyymiLECT NOTES ARTIF INT

Sarjan nimiLecture Notes in Computer Science

Vuosikerta7006

Aloitussivu87

Lopetussivu98

Sivujen määrä2

ISBN978-3-642-24454-4

eISBN978-3-642-24455-1

ISSN0302-9743

DOIhttps://doi.org/10.1007/978-3-642-24455-1_8

Rinnakkaistallenteen osoitehttp://research.utu.fi/converis/portal/Publication/3023302


Tiivistelmä
In real-world machine learning scenarios, labeled data is often rare while unlabeled data can be obtained easily. Semi-supervised approaches aim at improving the prediction performance by taking both the labeled as well as the unlabeled part of the data into account. In particular, semi-supervised support vector machines favor decision hyperplanes which lie in a "low-density area" induced by the unlabeled patterns (while still considering the labeled part of the data). The associated optimization problem, however, is of combinatorial nature and, hence, difficult to solve. In this work, we present an efficient implementation of a simple local search strategy that is based on matrix updates of the intermediate candidate solutions. Our experiments on both artificial and real-world data sets indicate that the approach can successfully incorporate unlabeled data in an efficient manner.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 22:22