A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Vector-Valued Local Approximation Spaces




TekijätTuomas Hytönen, Jori Merikoski

KustantajaBirkhauser Boston

Julkaisuvuosi2019

Lehti:Journal of Fourier Analysis and Applications

Tietokannassa oleva lehden nimiJournal of Fourier Analysis and Applications

Vuosikerta25

Numero2

Aloitussivu299

Lopetussivu320

Sivujen määrä22

ISSN1069-5869

eISSN1531-5851

DOIhttps://doi.org/10.1007/s00041-018-9598-2

Verkko-osoitehttps://research.utu.fi/converis/portal/Publication/29637282


Tiivistelmä

We prove that for every Banach space Y, the Besov spaces of functions from the n-dimensional Euclidean space to Y agree with suitable local approximation spaces with equivalent norms. In addition, we prove that the Sobolev spaces of type q are continuously embedded in the Besov spaces of the same type if and only if Y has martingale cotype q. We interpret this as an extension of earlier results of Xu (J Reine Angew Math 504:195–226, 1998), and Martínez et al. (Adv Math 203(2):430–475, 2006). These two results combined give the characterization that Y admits an equivalent norm with modulus of convexity of power type q if and only if weakly differentiable functions have good local approximations with polynomials.



Last updated on 2024-26-11 at 22:45