A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

An experimental comparison of cross-validation techniques for estimating the area under the ROC curve




TekijätAirola A, Pahikkala T, Waegeman W, De Baets B, Salakoski T

KustantajaELSEVIER SCIENCE BV

Julkaisuvuosi2011

JournalComputational Statistics and Data Analysis

Tietokannassa oleva lehden nimiCOMPUTATIONAL STATISTICS & DATA ANALYSIS

Lehden akronyymiCOMPUT STAT DATA AN

Numero sarjassa4

Vuosikerta55

Numero4

Aloitussivu1828

Lopetussivu1844

Sivujen määrä17

ISSN0167-9473

DOIhttps://doi.org/10.1016/j.csda.2010.11.018

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/2930618


Tiivistelmä
Reliable estimation of the classification performance of inferred predictive models is difficult when working with small data sets. Cross-validation is in this case a typical strategy for estimating the performance. However, many standard approaches to cross-validation suffer from extensive bias or variance when the area under the ROC curve (AUC) is used as the performance measure. This issue is explored through an extensive simulation study. Leave-pair-out cross-validation is proposed for conditional AUC-estimation, as it is almost unbiased, and its deviation variance is as low as that of the best alternative approaches. When using regularized least-squares based learners, efficient algorithms exist for calculating the leave-pair-out cross-validation estimate.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-26-05 at 11:53