A4 Refereed article in a conference publication

Supporting Concurrent Memory Access in TCF-aware Processor Architectures




AuthorsMartti Forsell, Jussi Roivainen, Ville Leppänen, Jesper Träff

EditorsJari Nurmi, Mark Vesterbacka, J. Jacob Wikner, Atila Alvandpour, Martin Nielsen-Lönn, Ivan Ring Nielsen

Conference nameNordic Circuits and Systems Conference

Publication year2017

Book title Proceedings of Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC)

First page 1

Last page6

Number of pages6

ISBN978-1-5386-2845-4

eISBN978-1-5386-2844-7

DOIhttps://doi.org/10.1109/NORCHIP.2017.8124962

Web address http://ieeexplore.ieee.org/document/8124962/

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/290065560


Abstract

The Thick Control Flow (TCF) model packs together selfsimilar
computations to simplify parallel programming and to eliminate
redundant usage of associated software and hardware resources.
While there are processor architectures supporting native execution
of programs written for the model, none of them support concurrent
memory access that can speed up execution of many algorithms by a
logarithmic factor. In this paper, we propose an architectural solution
implementing concurrent memory access for TCF-aware processors.
The solution is based on bounded size step caches and two-phase
structure of the TCF-aware processors. Step caches capture and hold
the references made during the on-going step of an execution that
are independent by the definition of TCF execution and therefore
avoid coherence problems. The 2-phase structure reduces some concurrent
accesses to a frontend operation followed by broadcast in the
spreading network. According to our evaluation, a concurrent memory
access-aware B-backend unit TCF processor executes certain algorithms
up to B times faster than the baseline TCF processor.


Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 21:54