A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Combining support vector machines and LSTM networks for chemical-protein relation extraction




TekijätFarrokh​ Mehryary,​​ Jari​ Björne​,​ Tapio​ Salakoski​,​ Filip​ Ginter​

ToimittajaCecilia Arighi, Qinghua Wang, Cathy Wu

Konferenssin vakiintunut nimiBioCreative

Julkaisuvuosi2018

Kokoomateoksen nimiProceedings of the BioCreative VI Workshop

Aloitussivu175

Lopetussivu179

ISBN978-84-948397-0-2

Verkko-osoitehttp://www.biocreative.org/resources/publications/bcvi-proceedings/

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/28819195


Tiivistelmä

We present the results of our participation in the BioCreative VI: Text mining chemical-protein interactions (CHEMPROT) track. The goal of this task is to promote the development and evaluation of systems capable of extracting relations between chemical compounds/drug and genes/proteins from biomedical literature. We participate with two systems: (1) an SVM system which relies on a rich set of features extracted from the parse graph and (2) an ensemble of neural networks that utilize LSTM networks and generate features along the shortest path of dependencies. We also combine the predictions from the two systems with the goal of increasing performance. On the development set, our system combination approach outperforms the two individual systems, achieving an F-score of 61.09 (according to the official evaluation metric). On the test set, our SVM system achieves the highest result for our submissions with​ ​an​ ​ F-score​ ​ of​ ​ 60.99.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 12:35