ON (Q,1)-SUBNORMAL Q-ARY COVERING CODES
: HONKALA I
Publisher: ELSEVIER SCIENCE BV
: 1994
: Discrete Applied Mathematics
: DISCRETE APPLIED MATHEMATICS
: DISCRETE APPL MATH
: 52
: 3
: 213
: 221
: 9
: 0166-218X
DOI: https://doi.org/10.1016/0166-218X(94)90141-4
We show that if q not-equal 3 is a prime power and there exists a (q, n, M) 1 code, i.e., a q-ary code of length n with M codewords and covering radius 1 then there exists also a (q, 1)-subnormal (q, qn + 1, q((q-1)n)M) 1 code. We also show that all nontrivial linear q-ary codes with covering radius 1 are (q, 1)-subnormal with the exception of the ternary [4, 2]1 Hamming code.