A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
ON (Q,1)-SUBNORMAL Q-ARY COVERING CODES
Tekijät: HONKALA I
Kustantaja: ELSEVIER SCIENCE BV
Julkaisuvuosi: 1994
Journal: Discrete Applied Mathematics
Tietokannassa oleva lehden nimi: DISCRETE APPLIED MATHEMATICS
Lehden akronyymi: DISCRETE APPL MATH
Vuosikerta: 52
Numero: 3
Aloitussivu: 213
Lopetussivu: 221
Sivujen määrä: 9
ISSN: 0166-218X
DOI: https://doi.org/10.1016/0166-218X(94)90141-4
Tiivistelmä
We show that if q not-equal 3 is a prime power and there exists a (q, n, M) 1 code, i.e., a q-ary code of length n with M codewords and covering radius 1 then there exists also a (q, 1)-subnormal (q, qn + 1, q((q-1)n)M) 1 code. We also show that all nontrivial linear q-ary codes with covering radius 1 are (q, 1)-subnormal with the exception of the ternary [4, 2]1 Hamming code.
We show that if q not-equal 3 is a prime power and there exists a (q, n, M) 1 code, i.e., a q-ary code of length n with M codewords and covering radius 1 then there exists also a (q, 1)-subnormal (q, qn + 1, q((q-1)n)M) 1 code. We also show that all nontrivial linear q-ary codes with covering radius 1 are (q, 1)-subnormal with the exception of the ternary [4, 2]1 Hamming code.