A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Supervised dimension reduction for multivariate time series




TekijätMatilainen Markus, Croux Christophe, Nordhausen Klaus, Oja Hannu

KustantajaElsevier

Julkaisuvuosi2017

JournalEconometrics and Statistics

Vuosikerta4

Aloitussivu57

Lopetussivu69

Sivujen määrä13

ISSN2468-0389

eISSN2452-3062

DOIhttps://doi.org/10.1016/j.ecosta.2017.04.002

Verkko-osoitehttps://doi.org/10.1016/j.ecosta.2017.04.002

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/28247075


Tiivistelmä

A regression model where the response as well as the explaining variables are time series is considered. A general model which allows supervised dimension reduction in this context is suggested without considering the form of dependence. The method for this purpose combines ideas from sliced inverse regression (SIR) and blind source separation methods to obtain linear combinations of the explaining time series which are ordered according to their relevance with respect to the response. The method gives also an indication of which lags of the linear combinations are of importance. The method is demonstrated using simulations and a real data example.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 19:30