A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

On Independent Component Analysis with Stochastic Volatility Models




TekijätMarkus Matilainen, Jari Miettinen, Klaus Nordhausen, Hannu Oja, Sara Taskinen

KustantajaÖsterreichische Statistische Gesellschaft

Julkaisuvuosi2017

JournalAustrian Journal of Statistics

Vuosikerta46

Numero3-4

Aloitussivu57

Lopetussivu66

Sivujen määrä10

ISSN1026-597X

DOIhttps://doi.org/10.17713/ajs.v46i3-4.671

Verkko-osoitehttp://www.ajs.or.at/index.php/ajs/article/view/vol46-3-4-6

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/28245741


Tiivistelmä

Consider a multivariate time series where each component series is assumed to be a linear mixture of latent mutually independent stationary time series. Classical independent component analysis (ICA) tools, such as fastICA, are often used to extract latent series, but they don't utilize any information on temporal dependence. Also nancial time series often have periods of low and high volatility. In such settings second order source separation methods, such as SOBI, fail. We review here some classical methods used for time series with stochastic volatility, and suggest modi cations of them by proposing a family of vSOBI estimators. These estimators use dierent nonlinearity functions to capture nonlinear autocorrelation of the time series and extract the independent components. Simulation study shows that the proposed method outperforms the existing methods when latent components follow GARCH and SV models. This paper is an invited extended version of the paper presented at the CDAM 2016 conference.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 17:47