A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

End-to-End System for Bacteria Habitat Extraction




TekijätFarrokh Mehryary, Kai Hakala, Suwisa Kaewphan, Jari Björne, Tapio Salakoski, Filip Ginter

ToimittajaKevin Bretonnel Cohen, Dina Demner-Fushman, Sophia Ananiadou, Jun-ichi Tsujii

Konferenssin vakiintunut nimiWorkshop on Biomedical Natural Language Processing

Julkaisuvuosi2017

Kokoomateoksen nimiSIGBioMed Workshop on Biomedical Natural Language: Proceedings of the 16th BioNLP Workshop

Aloitussivu80

Lopetussivu90

Sivujen määrä11

ISBN978-1-945626-59-3

Verkko-osoitehttp://aclweb.org/anthology/W17-2310


Tiivistelmä

We introduce an end-to-end system capable
of named-entity detection, normalization
and relation extraction for extracting
information about bacteria and their habitats
from biomedical literature. Our system
is based on deep learning, CRF classifiers
and vector space models. We train
and evaluate the system on the BioNLP
2016 Shared Task Bacteria Biotope data.
The official evaluation shows that the joint
performance of our entity detection and relation
extraction models outperforms the
winning team of the Shared Task by 19pp
on F-score, establishing a new top score
for the task. We also achieve state-of-the-art
results in the normalization task.
Our system is open source and freely
available at https://github.com/
TurkuNLP/BHE.



Last updated on 2024-26-11 at 11:50