A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Pointwise estimates to the modified Riesz potential
Tekijät: Petteri Harjulehto, Ritva Hurri-Syrjänen
Kustantaja: Springer New York LLC
Julkaisuvuosi: 2018
Journal: manuscripta mathematica
Tietokannassa oleva lehden nimi: Manuscripta Mathematica
Vuosikerta: 156
Numero: 3-4
Aloitussivu: 521
Lopetussivu: 543
Sivujen määrä: 23
ISSN: 0025-2611
eISSN: 1432-1785
DOI: https://doi.org/10.1007/s00229-017-0983-y
Verkko-osoite: https://link.springer.com/article/10.1007/s00229-017-0983-y
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/27810254
In a smooth domain a function can be estimated pointwise by the classical Riesz potential of its gradient. Combining this estimate with the boundedness of the classical Riesz potential yields the optimal Sobolev–Poincaré inequality. We show that this method gives a Sobolev–Poincaré inequality also for irregular domains whenever we use the modified Riesz potential which arise naturally from the geometry of the domain. The exponent of the Sobolev–Poincaré inequality depends on the domain. The Sobolev–Poincaré inequality given by this approach is not sharp for irregular domains, although the embedding for the modified Riesz potential is optimal. In order to obtain the results we prove a new pointwise estimate for the Hardy–Littlewood maximal operator.
Ladattava julkaisu This is an electronic reprint of the original article. |