A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Pointwise estimates to the modified Riesz potential




TekijätPetteri Harjulehto, Ritva Hurri-Syrjänen

KustantajaSpringer New York LLC

Julkaisuvuosi2018

Journalmanuscripta mathematica

Tietokannassa oleva lehden nimiManuscripta Mathematica

Vuosikerta156

Numero3-4

Aloitussivu521

Lopetussivu543

Sivujen määrä23

ISSN0025-2611

eISSN1432-1785

DOIhttps://doi.org/10.1007/s00229-017-0983-y

Verkko-osoitehttps://link.springer.com/article/10.1007/s00229-017-0983-y

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/27810254


Tiivistelmä

In a smooth domain a function can be estimated pointwise by the classical Riesz potential of its gradient. Combining this estimate with the boundedness of the classical Riesz potential yields the optimal Sobolev–Poincaré inequality. We show that this method gives a Sobolev–Poincaré inequality also for irregular domains whenever we use the modified Riesz potential which arise naturally from the geometry of the domain. The exponent of the Sobolev–Poincaré inequality depends on the domain. The Sobolev–Poincaré inequality given by this approach is not sharp for irregular domains, although the embedding for the modified Riesz potential is optimal. In order to obtain the results we prove a new pointwise estimate for the Hardy–Littlewood maximal operator.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 23:30