A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Norm inequalities for vector functions
Tekijät: Bhayo B, Božin V, Kalaj D, Vuorinen M
Julkaisuvuosi: 2011
Journal: Journal of Mathematical Analysis and Applications
Tietokannassa oleva lehden nimi: Journal of Mathematical Analysis and Applications
Numero sarjassa: 2
Vuosikerta: 380
Numero: 2
Aloitussivu: 768
Lopetussivu: 781
Sivujen määrä: 14
ISSN: 0022-247X
DOI: https://doi.org/10.1016/j.jmaa.2011.02.029
Verkko-osoite: http://api.elsevier.com/content/abstract/scopus_id:79954997842
Tiivistelmä
We study vector functions of Rn into itself, which are of the form x→g(|x|)x, where g:(0,∞)→(0,∞) is a continuous function and call these radial functions. In the case when g(t)=tc for some c∈R, we find upper bounds for the distance of image points under such a radial function. Some of our results refine recent results of L. Maligranda and S.S. Dragomir. In particular, we study quasiconformal mappings of this simple type and obtain norm inequalities for such mappings. © 2011 Elsevier Inc.
We study vector functions of Rn into itself, which are of the form x→g(|x|)x, where g:(0,∞)→(0,∞) is a continuous function and call these radial functions. In the case when g(t)=tc for some c∈R, we find upper bounds for the distance of image points under such a radial function. Some of our results refine recent results of L. Maligranda and S.S. Dragomir. In particular, we study quasiconformal mappings of this simple type and obtain norm inequalities for such mappings. © 2011 Elsevier Inc.