A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Independent component analysis for tensor-valued data




TekijätVirta J, Li B, Nordhausen K, Oja H

KustantajaELSEVIER INC

Julkaisuvuosi2017

JournalJournal of Multivariate Analysis

Tietokannassa oleva lehden nimiJOURNAL OF MULTIVARIATE ANALYSIS

Lehden akronyymiJ MULTIVARIATE ANAL

Vuosikerta162

Aloitussivu172

Lopetussivu192

Sivujen määrä21

ISSN0047-259X

DOIhttps://doi.org/10.1016/j.jmva.2017.09.008

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/27390341


Tiivistelmä
In preprocessing tensor-valued data, e.g., images and videos, a common procedure is to vectorize the observations and subject the resulting vectors to one of the many methods used for independent component analysis (ICA). However, the tensor structure of the original data is lost in the vectorization and, as a more suitable alternative, we propose the matrix- and tensor fourth order blind identification (MFOBI and TFOBI). In these tensorial extensions of the classic fourth order blind identification (FOBI) we assume a Kronecker structure for the mixing and perform FOBI simultaneously on each direction of the observed tensors. We discuss the theory and assumptions behind MFOBI and TFOBI and provide two different algorithms and related estimates of the unmixing matrices along with their asymptotic properties. Finally, simulations are used to compare the method's performance with that of classical FOBI for vectorized data and we end with a real data clustering example. (C) 2017 Elsevier Inc. All rights reserved.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 10:24