A1 Refereed original research article in a scientific journal

SMC X-3: the closest ultraluminous X-ray source powered by a neutron star with non-dipole magnetic field




AuthorsTsygankov SS, Doroshenko V, Lutovinov AA, Mushtukov AA, Poutanen J

PublisherEDP SCIENCES S A

Publication year2017

JournalAstronomy and Astrophysics

Journal name in sourceASTRONOMY & ASTROPHYSICS

Journal acronymASTRON ASTROPHYS

Article numberA39

Volume605

Number of pages8

ISSN1432-0746

DOIhttps://doi.org/10.1051/0004-6361/201730553

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/27258983


Abstract
Aims. The magnetic field of accreting neutron stars determines their overall behavior including the maximum possible luminosity. Some models require an above-average magnetic field strength (greater than or similar to 10(13) G) in order to explain super-Eddington mass accretion rate in the recently discovered class of pulsating ultraluminous X-ray sources (ULX). The peak luminosity of SMCX-3 during its major outburst in 2016-2017 reached similar to 2.5x10(39) erg s(-1) comparable to that in ULXs thus making this source the nearest ULX-pulsar. Determination of the magnetic field of SMCX-3 is the main goal of this paper.Methods. SMCX-3 belongs to the class of transient X-ray pulsars with Be optical companions, and exhibited a giant outburst in July 2016-March 2017. The source has been observed over the entire outburst with the Swift/XRT and Fermi/GBM telescopes, as well as the NuSTAR observatory. Collected data allowed us to estimate the magnetic field strength of the neutron star in SMCX-3 using several independent methods.Results. Spin evolution of the source during and between the outbursts, and the luminosity of the transition to the so-called propeller regime in the range of (0.3-7) x 10(35) erg s(-1) imply a relatively weak dipole field of (1-5) x 10(12) G. On the other hand, there is also evidence for a much stronger field in the immediate vicinity of the neutron star surface. In particular, transition from super-to sub-critical accretion regime associated with the cease of the accretion column and very high peak luminosity favor a field that is an order of magnitude stronger. This discrepancy makes SMCX-3 a good candidate for possessing significant non-dipolar components of the field, and an intermediate source between classical X-ray pulsars and accreting magnetars which may constitute an appreciable fraction of ULX population.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 20:53