A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Variations of the Morse-Hedlund theorem for k-abelian equivalence




TekijätKarhumäki J., Saarela A., Zamboni L.

ToimittajaArseny M. ShurMikhail V. Volkov

Konferenssin vakiintunut nimiInternational conference on developments in language theory

KustantajaSpringer Verlag

Julkaisuvuosi2014

JournalLecture Notes in Computer Science

Kokoomateoksen nimiDevelopments in Language Theory: 18th International Conference, DLT 2014, Ekaterinburg, Russia, August 26-29, 2014. Proceedings

Tietokannassa oleva lehden nimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Sarjan nimiLecture Notes in Computer Science

Numero sarjassa8633

Aloitussivu203

Lopetussivu214

Sivujen määrä12

ISBN978-3-319-09697-1

eISBN978-3-319-09698-8

ISSN0302-9743

DOIhttps://doi.org/10.1007/978-3-319-09698-8_18

Verkko-osoitehttps://link.springer.com/chapter/10.1007/978-3-319-09698-8_18

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/2720340


Tiivistelmä

In this paper we investigate local-to-global phenomena for a new family of complexity functions of infinite words indexed by k {+∞} where denotes the set of positive integers. Two finite words u and v in A are said to be k-abelian equivalent if for all x A of length less than or equal to k, the number of occurrences of x in u is equal to the number of occurrences of x in v. This defines a family of equivalence relations ∼ on A , bridging the gap between the usual notion of abelian equivalence (when k=1) and equality (when k=+∞). Given an infinite word w A , we consider the associated complexity function which counts the number of k-abelian equivalence classes of factors of w of length n. As a whole, these complexity functions have a number of common features: Each gives a characterization of periodicity in the context of bi-infinite words, and each can be used to characterize Sturmian words in the framework of aperiodic one-sided infinite words. Nevertheless, they also exhibit a number of striking differences, the study of which is one of the main topics of our paper. © 2014 Springer International Publishing Switzerland.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 23:30