A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

A class of solvable multiple entry problems with forced exits




TekijätLempa Jukka

KustantajaSpringer New York LLC

Julkaisuvuosi2019

JournalApplied Mathematics and Optimization

Tietokannassa oleva lehden nimiApplied Mathematics and Optimization

Vuosikerta79

Numero3

Aloitussivu593

Lopetussivu619

Sivujen määrä27

ISSN0095-4616

eISSN1432-0606

DOIhttps://doi.org/10.1007/s00245-017-9449-6

Rinnakkaistallenteen osoitehttps://arxiv.org/abs/1610.02877


Tiivistelmä

We study an optimal investment problem with multiple entries and forced exits. A closed form solution of the optimisation problem is presented for general underlying diffusion dynamics and a general running payoff function in the case when forced exits occur on the jump times of a Poisson process. Furthermore, we allow the investment opportunity to be subject to the risk of a catastrophe that can occur at the jumps of the Poisson process. More precisely, we attach IID Bernoulli trials to the jump times and if the trial fails, no further re-entries are allowed. We show in the general case that the optimal investment threshold is independent of the success probability is the Bernoulli trials. The results are illustrated with explicit examples.



Last updated on 2024-26-11 at 22:34