A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Classifying Web Exploits with Topic Modeling




TekijätJukka Ruohonen

ToimittajaA Min Tjoa, Roland R. Wagner

Konferenssin vakiintunut nimiInternational Workshop on Database and Expert Systems Applications

Julkaisuvuosi2017

Kokoomateoksen nimiProceedings of the 28th International Workshop on Database and Expert Systems Applications (DEXA), 2017

Aloitussivu93

Lopetussivu97

Sivujen määrä5

ISBN978-1-5386-2207-0

eISBN978-1-5386-1051-0

ISSN1529-4188

DOIhttps://doi.org/10.1109/DEXA.2017.35

Verkko-osoitehttp://ieeexplore.ieee.org/document/8049693/

Rinnakkaistallenteen osoitehttps://arxiv.org/abs/1710.05561


Tiivistelmä

This short empirical paper investigates how well topic modeling and database meta-data characteristics can classify web and other proof-of-concept (PoC) exploits for publicly disclosed software vulnerabilities. By using a dataset comprised of over 36 thousand PoC exploits, near a 0.9 accuracy rate is obtained in the empirical experiment. Text mining and topic modeling are a significant boost factor behind this classification performance. In addition to these empirical results, the paper contributes to the research tradition of enhancing software vulnerability information with text mining, providing also a few scholarly observations about the potential for semi-automatic classification of exploits in the existing tracking infrastructures.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 10:43