A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Method for solving generalized convex nonsmooth mixed-integer nonlinear programming problems




TekijätEronen VP, Kronqvist J, Westerlund T, Mäkelä MM, Karmitsa N

KustantajaSPRINGER

Kustannuspaikka000410819100007

Julkaisuvuosi2017

JournalJournal of Global Optimization

Tietokannassa oleva lehden nimiJOURNAL OF GLOBAL OPTIMIZATION

Lehden akronyymiJ GLOBAL OPTIM

Vuosikerta69

Numero2

Aloitussivu443

Lopetussivu459

Sivujen määrä17

ISSN0925-5001

eISSN1573-2916

DOIhttps://doi.org/10.1007/s10898-017-0528-7

Verkko-osoite10.1007/s10898-017-0528-7

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/26899604


Tiivistelmä
In this paper, we generalize the extended supporting hyperplane algorithm for a convex continuously differentiable mixed-integer nonlinear programming problem to solve a wider class of nonsmooth problems. The generalization is made by using the subgradients of the Clarke subdifferential instead of gradients. Consequently, all the functions in the problems are assumed to be locally Lipschitz continuous. The algorithm is shown to converge to a global minimum of an MINLP problem if the objective function is convex and the constraint functions are f degrees-pseudoconvex. With some additional assumptions, the constraint functions may be f degrees-quasiconvex.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 23:53