A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
Word equations where a power equals a product of powers
Tekijät: Aleksi Saarela
Toimittaja: Heribert Vollmer, Brigitte Vallée
Konferenssin vakiintunut nimi: Symposium on Theoretical Aspects of Computer Science (STACS)
Kustantaja: Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Julkaisuvuosi: 2017
Journal: LIPICS – Leibniz international proceedings in informatics
Kokoomateoksen nimi: 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)
Tietokannassa oleva lehden nimi: Leibniz International Proceedings in Informatics, LIPIcs
Sarjan nimi: Leibniz International Proceedings in Informatics (LIPIcs)
Vuosikerta: 66
ISBN: 9783959770286
ISSN: 1868-8969
DOI: https://doi.org/10.4230/LIPIcs.STACS.2017.55
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/26890766
We solve a long-standing open problem on word equations by proving that if the words x_0, ..., x_n satisfy the equation x_0^k = x_1^k ... x_n^k for three positive values of k, then the words commute. One of our methods is to assign numerical values for the letters, and then study the sums of the letters of words and their prefixes. We also give a geometric interpretation of our methods.
Ladattava julkaisu This is an electronic reprint of the original article. |