A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
On Quasimöbius Maps in Real Banach Spaces
Tekijät: M Huang, Y Li, M Vuorinen, X Wang
Kustantaja: HEBREW UNIV MAGNES PRESS
Kustannuspaikka: JERUSALEM; PO BOX 39099, JERUSALEM 91390, ISRAEL
Julkaisuvuosi: 2013
Journal: Israel Journal of Mathematics
Tietokannassa oleva lehden nimi: Israel Journal of Mathematics
Lehden akronyymi: Isr.J.Math.
Numero sarjassa: 1
Vuosikerta: 198
Numero: 1
Aloitussivu: 467
Lopetussivu: 486
Sivujen määrä: 20
ISSN: 0021-2172
DOI: https://doi.org/10.1007/s11856-013-0043-6
Verkko-osoite: http://api.elsevier.com/content/abstract/scopus_id:84883821449
Tiivistelmä
Suppose that E and E' denote real Banach spaces with dimension at least 2, that D not subset of E and D' not subset of E' are domains, that f : D -> D' is an (M, C)-CQH homeomorphism, and that D is uniform. The aim of this paper is to prove that D' is a uniform domain if and only if f extends to a homeomorphism (f) over bar : (D) over bar -> (D) over bar' and (f) over bar is eta-QM relative to partial derivative D. This result shows that the answer to one of the open problems raised by Vaisala from 1991 is affirmative.
Suppose that E and E' denote real Banach spaces with dimension at least 2, that D not subset of E and D' not subset of E' are domains, that f : D -> D' is an (M, C)-CQH homeomorphism, and that D is uniform. The aim of this paper is to prove that D' is a uniform domain if and only if f extends to a homeomorphism (f) over bar : (D) over bar -> (D) over bar' and (f) over bar is eta-QM relative to partial derivative D. This result shows that the answer to one of the open problems raised by Vaisala from 1991 is affirmative.